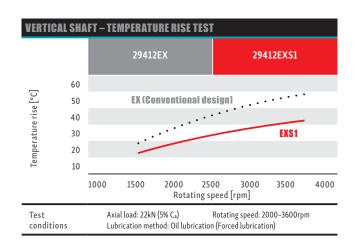
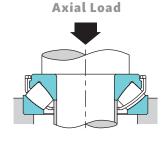


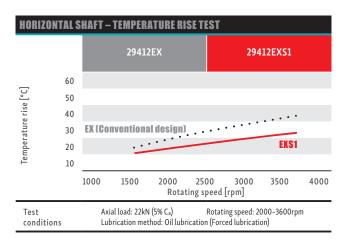
SPHERICAL ROLLER THRUST BEARINGS

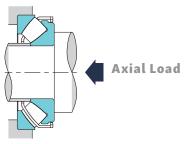
EXS1-SERIES

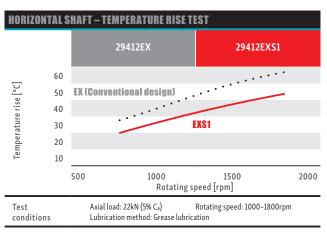
World's highest load ratings by using largediameter rollers.

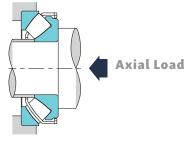

Features of the EXS1-series


High load ratings


- ► World's highest load ratings by using large-diameter rollers.
- ▶ Long life has been achieved by using ultra clean steel.


Lower temperature rise and higher permissible operating speeds.


- ► Greatly reduced sliding resistance is achieved through cage design optimisation.
- ► Temperature rise is minimized through cage design optimisation.
- Greatly reduced temperature rise with grease lubrication, particularly on horizontal shaft applications when compared to conventional bearings.
- ► World's highest permissible rotating speed is achieved because of low-temperature rise.
- Reduced rotational torque is achieved by improving the surface finish of the end faces of the rollers.



Outer ring

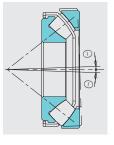
- ► Even stress distribution is achieved by optimising the curvature of the raceway surface.
- ► Capable of continuous operating temperatures up to 200°C.

Inner ring

- ► Even stress distribution is achieved by optimising the curvature of the raceway surface.
- ► Capable of continuous operating temperatures up to 200°C.

Roller

- ► High-load ratings by using large-diameter rollers.
- ► Reduced rotational torque is achieved by improving the surface finish of the end faces of the rollers.


Stamped steel cage

- ▶ Reduced sliding resistance by optimising the design.
- ► Allow to be used on horizontal shaft as well as on vertical shaft applications.

Precautions for use

Permissible alignment angle

Under general service conditions, it is permissible to operate with up to a 2°misalignment angle Θ . Note that this may be restricted depending on the machine structure surrounding the bearing.

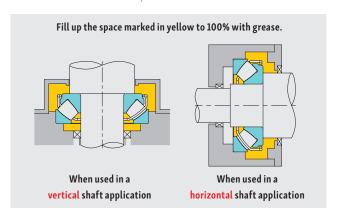
Safety factor

Ensure that the safety factor S₀ is normally 4 or above.

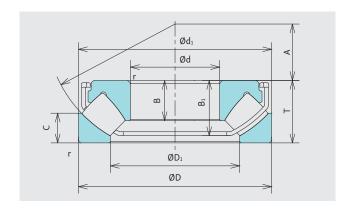
Permissible radial load

Ensure that the effective radial load is 50% or less of the axial load.

Minimum axial load


To prevent skidding between the rollers and raceway, the spherical roller thrust bearing must be always subjected to a minimum axial load. The minimum axial load F_{amin} is as mentioned on the right.

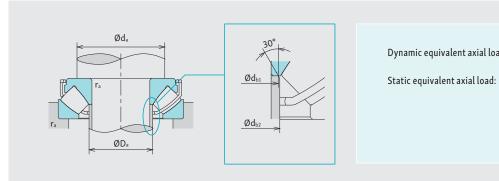
Famin = $\frac{C_{oa}}{1000}$


Precautions for lubrication

The spherical roller thrust bearing design does not allow easy lubrication of the roller end face and the inner ring flange surface. Ensure that they are fully lubricated. When grease is used for lubrication, it is recommended to completely fill 100% of free space volume of the bearing and housing with grease as shown in the figure below.

(For the free space volume of the bearing, see the dimension table.)

SPHERICAL ROLLER THRUST BEARINGS



SERIES

	Bearing number		Bounda	ry [mm]		Basic dynamic	Basic static load	Permissible rota				
	Cylindrical bore	d	D	В	r (min.)	load rating Ca[kN]	rating Coa[kN]	Grease	Oil			
·	29317EXS1	85	150	39	1.5	455	1060	1600	3500			
	29318EXS1	90	155	39	1.5	445	1070	1600	3500			
	29320EXS1	100	170	42	1.5	545	1400	1500	3200			
	29322EXS1	110	190	48	2	695	1730	1300	2700			
	29324EXS1	120	210	54	2.1	835	2160	1100	2400			
	29326EXS1	130	225	58	2.1	960	2440	1000	2300			
	29328EXS1	140	240	60	2.1	1080	2840	950	2100			
·	29332EXS1	160	270	67	3	1300	3500	850	1800			

SERIES

Bearing number		Bounda	ry [mm]		Basic dynamic	Basic static load	Permissible rota		
Cylindrical bore	d	D	В	r (min.)	load rating Ca[kN]	rating C₀a[kN]	Grease	Oil	
29412EXS1	60	130	42	1.5	445	915	1800	3600	
29413EXS1	65	140	45	2	520	1110	1700	3500	
29414EXS1	70	150	48	2	610	1350	1600	3100	
29415EXS1	75	160	51	2	670	1470	1600	3000	
29416EXS1	80	170	54	2.1	760	1630	1500	2700	
29417EXS1	85	180	58	2.1	820	1810	1300	2600	
29418EXS1	90	190	60	2.1	935	2080	1300	2400	
29420EXS1	100	210	67	3	1150	2530	1100	2200	
29422EXS1	110	230	73	3	1350	3150	950	1900	
29424EXS1	120	250	78	4	1510	3750	900	1800	
29426EXS1	130	270	85	4	1750	4300	850	1500	
29428EXS1	140	280	85	4	1760	4350	850	1500	
29430EXS1	150	300	90	4	2130	5150	800	1400	
29432EXS1	160	320	95	5	2350	5750	750	1300	

Dynamic equivalent axial load: $P_a=F_a+1.2F_r$

 $P_{0a}=F_a+2.7F_r$

Fa: Axial load Fr: Radial load However F_r/F_a≤0.55

	Re	eference din	nensions [mr	n]		Abutment	& fillet dimen	sions [mm]	Spacer dimensions [mm]		88 a a a [1, m]	Space
d1	D1	В	B1	С	A	da ** (min.)	D _a (max.)	r _a (max.)	d _{ь1} (max.)	d _{b2} (min.)	Mass [kg]	volume [cm³]
134	110.5	25	35	19	50	44.0	71.0	1.5	90	90	2.67	125
135.2	116	23.8	35.1	19	52	47.0	73.0	1.0	95	95	2.75	135
146.9	126	27	38.2	21	58	50.0	81.0	1.5	105	107	3.61	160
165.1	140.6	30.9	44	23	64	48.5	81.5	1.5	116	117	5.22	240
184.5	155	34.5	48.7	26	70	107.0	158.0	2.0	127	128	7.3	325
197.4	165.8	36.8	52.7	28	76	107.0	158.0	2.0	136	138	8.82	410
218.4	179	38.5	54.8	29	82	109.0	186.0	2.5	147.5	149	10.5	450
243.4	199.8	44	61.4	32	92	109.0	186.0	2.5	166	174	14.5	635

	Re	eference dim	ensions [mr	n]		Abutment	& fillet dimen	sions [mm] Spacer dimensions [mm]		_	Mana [lum]	Space
d1	D ₁	В	B1	С	A	d _a ** (min.)	D _a (max.)	ra (max.)	d _{ь1} (max.)	d _{b2} (min.)	Mass [kg]	volume [cm³]
113	87	27	37.1	20	38	91	108	1.5	66	66	2.5	120
123	93.5	29.5	40	21	42	99	115	2	72	72	3.2	135
128.3	98.4	32	42.7	23	44	106	125	2	75.5	77.5	3.82	175
140	105.6	34.5	45.6	24	47	113	132	2	82.5	82.5	4.7	200
149	113	36	48.2	26	50	120	140	2	88	88	5.6	240
158.2	120.5	37	50.6	28	54	130	150	2	94	94	6.69	290
162	127	40.5	53	29	56	135	157	2	99	99	7.83	320
181	139	44.5	59.6	32	62	150	175	2.5	108	110	10.6	440
199.6	153.4	48	64.4	35	69	165	190	2.5	119.5	120	14	550
218	166.5	54	70.9	37	74	180	205	3	131	132	17.6	700
236.4	181	56	75	41	81	195	255	3	141.5	143	22.3	890
246	196	53.6	74.4	41	86	205	235	3	153	160	22.8	1000
264.4	207.5	58.5	80.8	44	92	220	250	3	163	169	27.8	1200
283.8	222	62.5	85.7	45	99	230	265	4	174.5	181	33.4	1450

Oil lubrication: When operated with a lubricant of VG32 viscosity supplied at a flowrate of 1 liter/min of circulating oil lubrication under 5% of the basic static load ratings (C_{0a}), the rotating speed shall allow the outer ring temperature to operate at 80°C or less.

Grease lubrication: When operated after filling 100% of the internal free space volume with an NLGI3 consistency grease under 5% of the basic static load ratings (C_{0a}), the rotating speed shall allow the outer ring temperature to operate at 80°C or less.

With either lubrication method, the bearing temperature will increase differently if the operating conditions (applied load, rotating speed, lubricating conditions, etc.) vary. Select the appropriate permissible rotating speed mentioned in the catalog.

^{*} Permissible rotating speed is defined as follows.

^{**}In case of heavy applied loads (generally exceeding 12% Ca), the value of da should be high enough to support the inner ring flange. Consult NACHI.

Application examples for NACHI Spherical Roller Thrust Bearings

Spherical Roller Thrust Bearings

NACHI spherical roller thrust bearings have special raceways and a large number of asymmetrical rollers. The contact angle (α) is about 45°, so they can withstand high axial loads in one direction and moderate radial loads and are suitable for comparatively high speeds. These rollers offer optimal adaptation with the washer for an ideal load distribution along the length of the rollers. Spherical roller thrust bearings are self-aligning and can compensate for misalignment of the shaft relative to the housing. Due to their special design, it can be advantageous in some applications when spherical roller thrust bearings are used instead of tapered roller bearings. Bearings of the 293 and 294 series are primarily suitable for bearing arrangements subject to very high loads.

The standard bearings have standardised dimensions.

They allow the free choice of the optimum bearing for the respective application in terms of

- ▶ load rating
- ▶ turning force
- ► available installation space

Well-known OEM customers and end customers all over the world trust NACHI thrust spherical roller bearings EXS1!

Typical areas of application for NACHI Spherical Roller Thrust Bearings EXS1

In injection moulding machines, extruders, gear units, cement mills, output side of ship drives and steering machines (helm support bearings), ship thrust bearings, refiners (fixed bearings) grinding of wood fibres for paper production, crane column bearings, vertical straightening rollers for steel parts, construction machines, vibratory screens and rolling mills, in short, wherever maximum load-bearing capacity and long service life are required, for the toughest of applications.

We offer you these advantages with our solution:

- ► Long service life
- ► Lower operating temperature
- ► High machine availability => optimised downtimes
- ► Lower maintenance costs
- ► Longer maintenance intervals
- ► High performance of your application
- ► Lower "total cost of ownership"

Requirements for these applications:

- ► High operational reliability
- ► Long service life
- ► High load ratings
- ► Acceptance of misalignments
- ► Minimal maintenance effort
- ► Reduced maintenance costs

Our application engineers will be pleased to assist you with your questions about our products.

 $Fig.: typical\ applications\ for\ NACHI\ spherical\ roller\ thrust\ bearings\ and\ other\ bearing\ types$

NACHI EUROPE GmbH | CENTRAL OFFICE GERMANY

Bischofstr. 99 | 47809 Krefeld | Germany | Phone: +49 2151 65046-0 | Fax: +49 2151 65046-90 | E-Mail: info@nachi.de | www.nachi.de

NACHI EUROPE GmbH	NACHI EUROPE GmbH	NACHI EUROPE GmbH	NACHI EUROPE GmbH		
SOUTH OFFICE GERMANY	U.K. BRANCH	CZECH BRANCH	TURKEY BRANCH		
Pleidesheimer Str. 47	Unit 3, 92 Kettles Wood Drive	Obchodní 132	Atatürk Mah. Mustafa		
74321 Bietigheim-Bissingen	Woodgate Business Park	251 01 Čestlice	Kemal Cad. No: 10/1A		
Germany	Birmingham B32 3DB	Czech Republic	34758 Ataşehir/Istanbul		
	United Kingdom		Turkey		
Phone: +49 7142 77418-0	Phone: +44 121 423-5000	Phone: +420 255 734-000	Phone: +90 216 688-4457		
Fax: +49 7142 77418-20	Fax: +44 121 421-7520	Fax: +420 255 734-001	Fax.: +90 216 688-4458		
E-Mail: info@nachi.de	E-Mail: sales@nachi.co.uk	E-Mail: info.cz@nachi.de	E-Mail: turkey@nachi.de		
Web: www.nachi.de	Web: www.nachi.co.uk	Web: www.nachi.de	Web: www.nachi.com.tr		

UR SYNERGYYUUR PERFORMANCE

NACHI-FUJIKOSHI CORP.

TOKYO

Shiodome Sumitomo Bldg., 1-9-2 Higashi-shinbashi, Minato-ku Toko, JAPAN Phone: +813 5568-5240 | Fax: +813 5568-5236

Web: www.nachi-fujikoshi.co.jp/

TOYAMA

1-1-1 Fujikoshi-Honmachi, Toyama, JAPAN Phone: +8176 423-5111 | Fax: +8176 493-5211

NACHI EUROPE GmbH

Bischofstr. 99 | DE-47809 Krefeld, Germany | Phone: +49 2151 650 46-0 | Fax: +49 2151 650 46-90 | Web: www.NACHI.de | Email: info@NACHI.de